Loeb Measures and Borel Algebras

نویسندگان

  • H. Jerome Keisler
  • Yeneng Sun
چکیده

It is shown that a measurable function from an atomless Loeb probability space (Ω,A, P ) to a Polish space is at least continuum-to-one valued almost everywhere. It follows that there is no injective mapping h : [0, 1] → Ω such that h([a, b]) is Loeb measurable for each 0 ≤ a < b ≤ 1 and P (h([0, 1])) > 0. Thus, when an atomless Loeb measurable algebra on an internal set of cardinality continuum is imposed on the unit interval [0, 1] through a bijection, it cannot contain the Borel algebra.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-regularity of multiplications for general measure algebras

Let $fM(X)$ be the  space of  all finite regular Borel measures on $X$. A general measure algebra is a subspace  of$fM(X)$,which is an $L$-space and has a multiplication preserving the probability measures. Let $cLsubseteqfM(X)$ be a general measure algebra on a locallycompact space $X$. In this paper, we investigate the relation between Arensregularity of $cL$ and the topology of $X$. We  find...

متن کامل

Infinite Products of Infinite Measures

Let (Xi, Bi, mi) (i ∈ N) be a sequence of Borel measure spaces. There is a Borel measure μ on ∏ i∈N Xi such that if Ki ⊆ Xi is compact for all i ∈ N and ∏ i∈N mi(Ki) converges then μ( ∏ i∈N Ki) = ∏ i∈N mi(Ki)

متن کامل

Probability Measures in the Logic of Nilpotent Minimum

We axiomatize the notion of state over finitely generated free NM-algebras, the Lindenbaum algebras of pure Nilpotent Minimum logic. We show that states over the free n-generated NM-algebra NM n exactly correspond to integrals of elements of NM n with respect to Borel probability measures.

متن کامل

The Completeness of the Isomorphism Relation for Countable Boolean Algebras

We show that the isomorphism relation for countable Boolean algebras is Borel complete, i.e., the isomorphism relation for arbitrary countable structures is Borel reducible to that for countable Boolean algebras. This implies that Ketonen’s classification of countable Boolean algebras is optimal in the sense that the kind of objects used for the complete invariants cannot be improved in an esse...

متن کامل

Fourier Algebras on Topological Foundation ∗-semigroups

We introduce the notion of the Fourier and Fouier-Stieltjes algebra of a topological ∗-semigroup and show that these are commutative Banach algebras. For a class of foundation semigroups, we show that these are preduals of von Neumann algebras. 1. Definitions and Notations Let S be a locally compact topological semigroup and M(S) be the Banach algebra of all bounded regular Borel measures μ on ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005